Bile Acids Reduce Endocytosis of High-Density Lipoprotein (HDL) in HepG2 Cells

نویسندگان

  • Clemens Röhrl
  • Karin Eigner
  • Stefanie Fruhwürth
  • Herbert Stangl
چکیده

High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SR-BI-mediated high density lipoprotein (HDL) endocytosis leads to HDL resecretion facilitating cholesterol efflux.

The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake from lipoproteins into liver and steroidogenic tissues but also cholesterol efflux from macrophages to HDL. Recently, we demonstrated the uptake of HDL particles in SR-BI overexpressing Chinese hamster ovarian cells (ldlA7-SRBI) using ultrasensitive microscopy. In...

متن کامل

Fatty acids liberated from high-density lipoprotein phospholipids by endothelial-derived lipase are incorporated into lipids in HepG2 cells.

We previously reported that endothelial-derived lipase (EDL) efficiently hydrolyses high-density-lipoprotein-derived phosphatidycholine (HDL-PC). In the present study, we assessed the ability of EDL to supply HepG2 cells with non-esterified fatty acids (NEFA) liberated from HDL-phospholipids. For this purpose, HepG2 cells infected with adenovirus encoding human EDL (EDL-Ad), or with control bet...

متن کامل

Localization and regulation of SR-BI in membrane rafts of HepG2 cells.

The scavenger receptor class B, type I (SR-BI) mediates cholesteryl esters (CE) selective uptake from low density lipoprotein (LDL) and high-density lipoprotein (HDL) particles. In a number of tissues expressing caveolin, SR-BI is localized in caveolae. We show using detergent-free sucrose gradients that SR-BI is found in membrane rafts devoid of caveolin-1 in the human hepatoma HepG2 cell. Per...

متن کامل

Biochemical profile of bile fluid in patients with malignant cholestasis in comparison with cholestasis due to biliary stone

Background: Cholangiocarcinoma is an invasive biliary malignancy with poor prognosis. Diagnostic accuracy of conventional methods is low which is mainly due to the specific anatomy of the disease. The aim of this study was to evaluate the diagnostic value of biochemical profile and tumor marker of the bile in patients with malignant cholestasis compared to that of choledocholithiasis. ...

متن کامل

The role of level and function of High Density Lipoprotein (HDL) in Cardiovascular Diseases

High-density lipoprotein (HDL) is a set of particles with heterogeneous structures that have different functions due to various compounds including surface charge, size, lipid, and protein compounds. Several prospective epidemiological studies have demonstrated that there is a clear inverse relationship between serum HDL concentration and risk of coronary heart disease, despite this relationshi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014